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Small Signal Models 
Small Signal Analysis



MOS Transistor Applications
(Digital Circuits)
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• Termed CMOS Logic
• Widely used in industry today (millions of transistors in many ICs using this logic
• Almost never used as discrete devices
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Review from Last Time:



Bipolar Transistor
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Review from Last Time:



Bipolar and MOS Region Comparisons
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Multi-Region Model 
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Small-Signal Principle
y
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Relationship is nearly linear in a small enough region around Q-point
Region of linearity is often quite large
Linear relationship may be different for different Q-points

y=f(x)

Review from Last Time:



Small-Signal Principle 
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• Mathematically, small signal model is simply Taylor’s series expansion
at the Q-point truncated after first-order terms

Small-Signal Model:
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Small-Signal Principle
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Small-Signal Principle
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A Small Signal  Equivalent Circuit

2-Terminal
Nonlinearl

Device
f(x)

Small-Signal Principle 
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The small-signal model of this 2-terminal electrical network is a resistor of value 1/y
One small-signal parameter characterizes this one-port but it is dependent on Q-point



Small-Signal Principle 

Goal with small signal model is to predict 
performance of circuit or device in the 
vicinity of an operating point

Operating point is often termed Q-point

Will be extended to functions of two and 
three variables

Review from Last Time:



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Small signal analysis example
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By selecting appropriate value of VSS, M1
will operate in the saturation region

VIN=VMsinωt

VM is small

( )2
OX

D IN SS T

µC WI V -V -V
2L

=

OUT DD D
V =V -I R

( )2
OX

OUT DD IN SS T

µC WV V V -V -V R
2L

= −

( )2TSS
OX

DQ VV
2L

WC µI +=



Small signal analysis example
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Small signal analysis example

VIN=VMsinωt
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By selecting appropriate value of VSS, M1
will operate in the saturation region

Assume M1 operating in saturation region



Small signal analysis example
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But – this expression gives little insight into how large the gain is !

Assume M1 operating in saturation region



Small signal analysis example
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Thus,  substituting from the expression for IDQ we obtain
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Note this is negative since VSS+VT < 0



Small signal analysis example

VIN=VMsinωt
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Observe the small signal voltage gain is twice the
Quiescent voltage across R divided by VSS+VT

• This analysis which required linearization of a nonlinear output voltage is quite 
tedious.

• This approach becomes unwieldy for even slightly more complicated circuits

• A much easier approach based upon the development of small signal models 
will provide the same results, provide more insight into both analysis and 
design, and result in a dramatic reduction in computational requirements 



Small-signal Operation of Nonlinear Circuits

• Small-signal principles

• Example Circuit

• Small-Signal Models

• Small-Signal Analysis of Nonlinear Circuits



Solution for the example was based upon solving the nonlinear circuit 
for VOUT and then linear zing the solution by doing a Taylor’s series 
expansion

• Solution of nonlinear equations very involved with two or more
nonlinear devices

• Taylor’s series linearization can get very tedious if multiple nonlinear 
devices are present 

Standard Approach to small-signal 
analysis of nonlinear networks

1. Solve nonlinear network

2. Linearize solution

1.Linearize nonlinear devices

2. Replace all devices with small-signal
equivalent

3 .Solve linear small-signal network

Alternative  Approach to small-signal 
analysis of nonlinear networks



Alternative  Approach to small-signal 
analysis of nonlinear networks

• Must only develop linearized model once for any 
nonlinear device

e.g. once for a MOSFET, once for a JFET, and once for a BJT

Linearized model for nonlinear device termed “small-signal model”

derivation of small-signal model for most nonlinear devices is less complicated than
solving even one simple nonlinear circuit

• Solution of linear network much easier than solution of
nonlinear network

1. Linearize nonlinear devices

2.  Replace all devices with small-signal
equivalent

3.  Solve linear small-signal network



Standard  Approach to small-signal 
analysis of nonlinear networks

1. Linearize nonlinear devices

2.  Replace all devices with small-signal
equivalent

3.  Solve linear small-signal network



Standard  Approach to analysis of 
nonlinear networks

Nonlinear
Network

dc Equivalent
Network

Q-point

Values for small-signal parameters

Small-signal
equivalent network

Small-signal output

Total output
(good approximation)



Standard  Approach to small-signal 
analysis of nonlinear networks

Nonlinear
Network

dc Equivalent
Network

Q-point

Values for small-signal parameters

Small-signal
equivalent network

Small-signal output

Total output
(good approximation)



Linearized nonlinear devices



Nonlinear network
Linearized small-
signal  network

Example:



Dc and small-signal equivalent elements

Element ss equivalent dc equivalnet

VDC
VDC

IDC IDC

R R
R

dc Voltage Source

dc Current Source

Resistor

VAC VACac Voltage Source

ac Current Source IAC IAC



Dc and small-signal equivalent elements



Dc and small-signal equivalent elements



How is the small-signal equivalent circuit 
obtained from the nonlinear circuit?

What is the small-signal equivalent of the 
MOSFET and BJT ?



Small-Signal Model
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Small signal model is that which represents the relationship between the 
small signal voltages and the small signal currents

Consider 4-terminal network



Small-Signal Model
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Small signal model is that which represents the relationship between the 
small signal voltages and the small signal currents

For small signals, this relationship should be linear

Can be thought of as a change in coordinate systems from the large 
signal coordinate system to the small-signal coordinate system

Consider 4-terminal network



Recall for a function of one variable

Taylor’s Series Expansion about the point x0
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Recall for a function of one variable
)(xfy =

If x-x0 is small
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If we define the small signal variables as

0yy −=y

0xx −=x



Recall for a function of one variable
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If x-x0 is small
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Nonlinear network characterized by  3 functions each 
functions of 3 variables

Consider 4-terminal network
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Consider now 3 functions each functions of 3 variables
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Consider now 3 functions each functions of 3 variables
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3132121111 vyyy ++= vvi

This is now a linear relationship between the small 
signal electrical variables



Consider now 3 functions each functions of 3 variables

3132121111 vyyy ++= vvi
Lets now extend this to I2 and I3
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This is a small-signal model of a 4-terminal network and it is linear
9 small-signal parameters characterize the linear 4-terminal network
Small-signal model parameters dependent upon Q-point !



A small-signal equivalent circuit of a 4-terminal nonlinear network
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Small-Signal Model
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Consider 3-terminal network



Small-Signal Model
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Small signal model is that which represents the relationship between the 
small signal voltages and the small signal currents

Consider 3-terminal network



Small-Signal Model
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A Small Signal  Equivalent Circuit
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Consider 3-terminal network

4 small-signal parameters characterize this 3-terminal (two-port) linear network
Small signal parameters dependent upon Q-point



3-terminal small-signal network summary

Small signal model:
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Small-Signal Model
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Consider 2-terminal network



Small-Signal Model
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Small signal model is that which represents the relationship between the 
small signal voltages and the small signal currents

Consider 2-terminal network



Small-Signal Model
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Small Signal Model of MOSFET

3-terminal device 4-terminal device

MOSFET is actually a  4-terminal device but for many applications
acceptable predictiions of performance can be obtained by treating it as 
a 3-terminal device by neglecting the bulk terminal 

In this course, we have been treating it as a 3-terminal device and in this 
lecture will develop the small-signal model by treating it as a 3-terminal device



Small Signal Model of MOSFET
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3-terminal device

Large Signal Model

MOSFET is usually operated in saturation region in linear applications 
where a small-signal model is needed so will develop the small-signal 
model in the saturation region



Small Signal Model of MOSFET
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Small Signal Model of MOSFET
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Small Signal Model of MOSFET
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Small Signal Model of MOSFET

22 DQ
y I

O
g λ= ≅

( )21 OX GSQ T

Wy µC V V
Lm

g≅ = −

by convention, y21=gm, y22=g0

D m GS O DS
g g= +i V V
0

G
=i

∴



Small Signal Model of MOSFET
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